Figure 1 from Shan et al 2020
Schematic description of the mechanisms of CRISPR/Cas9‐induced genome editing.

Shan, S., P. S. Soltis, D. E. Soltis, and B. Yang. 2020. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Applications in Plant Sciences 8. [View on Publisher’s Site]

Abstract

The past six years have seen the rapid growth of studies of CRISPR/Cas9 in plant genome editing, a method that enormously facilitates both basic research and practical applications. Most studies have focused on genetic model species, but plant species that are not genetic models may also be economically important or biologically significant, or both. However, developing the CRISPR/Cas9 system in a nongenetic model is challenging. Here, we summarize CRISPR/Cas9 applications in 45 plant genera across 24 families and provide a reference for practical application of CRISPR in nongenetic model plant systems. Suggestions for selecting plant species and target genes are given for proof‐of‐principle CRISPR studies, and the processes of vector construction are reviewed. We recommend using transient assays to identify a desired CRISPR/Cas9 system in a nongenetic model. We then review methods of plant transformation and describe approaches, using regenerated transgenic plants, for evaluating CRISPR editing results. Lastly, potential future applications of CRISPR in nongenetic model plant species are discussed. This review provides a road map for developing CRISPR in nongenetic models, an application that holds enormous potential in plant biology.